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A study is made of free convection in axisymmetr ic  cavit ies with variable accelera t ion  forces. It is shown 
that convective heat  transfer should be taken into account when dealing with turbine rotor cavi t ies .  

Free convection is a mat ter  of importance in various branches of engineering.  The thermal  convection process is 
described by the equations [1]: 
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There are no known methods of obtaining exact  solutions to nonlinear equations such as (1 ) - (3 ) .  For this reason, 
the ma themat i ca l  side of the problem has seen l i t t le  development ,  and efforts have been devoted almost exclusively to 

existence proofs and the e lucidat ion of conditions for stable motion in various special  cas~es [2, 3]. 

The known exper imenta l  investigations for free convection in an internal cavi ty  pertain mainly  to constant-  
temperature walls, and are l imi ted  to an evaluat ion of total  heat  flux and a qual i ta t ive description of convective pro-  
cesses; no quanti tat ive description is a t tempted [4, 5]. 

Ostroumov [6] has made a deta i led  theoret ical  and exper imenta l  study of thermal  convection in cyl indr ical  ver t i -  
cal and inclined cavit ies by l inearizing the governing equations. Interesting results have also been obtained by other 
researchers, but in many cases the data accumulated are insufficient.  

There is thus l i t t le  possibil i ty of an accurate quanti tat ive calculat ion for free convection phenomena in the cav i -  
t ies of heat  engines, and pr imar i ly  in gas and steam turbines, where their role is al l  the more important due to the 
temperature increase of the working medium.  It is therefore not possible to make a proper evaluat ion of temperature 
distributions in units and components operating in the hottest zone, where temperature nonuniformities may lead to very 
considerable supplementary stresses, the permissible value of which is also determined by the temperature leve l .  More- 
over, in certain cases an underest imate of the effectiveness of convective heat  removal  may lead to structural compl i -  
cations due to the introduction of special  ar t i f ic ia l  cooling. 

The formulation of the problem of free convection in turbines cavi t ies  is ex t remely  compl ica ted ,  main ly  because 
of the diversity of cavi ty  shapes and temperature boundary conditions. This leads to very low eff iciency of the exper i -  
menta l  methods of investigation, since the results obtained may  be applied only to a narrow range of problems.  In fact ,  
both the geometr ica l  size of the cavi ty  and the temperature  conditions at its boundaries must be similar  to those in-  
volved in the test.  

By taking into account a number of special  features pecul iar  to the given case, certain simplif ications may  be 
made in formulating the  problem.  Parametric  l inear izat ion of the ini t ia l  conditions is permissible .  Since in most cases 
free convection is strongest under steady operating conditions, we may begin by considering the steady problem.  The 
near ly  axisymmetr ic  nature of the processes in turbines often makes it possible to heat  the process as two-dimensional  
rather than three-dimensional .  

In turbine rotor cavi t ies  the process is c lear ly  axisymmetr ic .  However, the solution of the free convect ion pro-  
blem is compl ica ted  by the fact  that in this case centrifugal and not gravitational forces act as the body forces causing 
convection, and these depend on the distance u to the axis of  rotation. Thus, g =  wXr in (1). 

We may  now introduce the stream function ~, so that (3) is satisfied, and taking the curl of both sides of (1), 
eliminate the pressure. 

Choosing some geometr ic  length R and some temperature d i f fe rence  (3 as character is t ic  values, we may put the 
equations in the dimensionless form: 
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Here Re w is the Reynolds number based on the circular rotor velocity at radius R, and Reu corresponds to the circular com- 
ponent of local velocity of the medium relative to the rotor, which exists even when the process is completely axisym- 
metric. This component appears only because of convective radial displacements of the medium, and in most cases will 
be small compared to the other velocity components of the medium and to the transport velocity. 

There is reason to suppose that Re u has practically no 
influence on the value of the normal temperature derivatives 

since it is they that determine the heat flux. For these cases 1 ~ . ~ ~ ~ ~ ~  ~ " 
the system becomes even simpler, since we may then neglect // )(__~(..._--")( 
the last term in (4) and confine the examination to (4) and / 

(5). 7- 
If this system is solved, it is easy to determine Re u / 

from (6), and afterwards to make the solution more exact, if // ) ( ~ ~ ( 
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Substitution of Grt = t- allows us to obtain a system con- 

tainLag only Pr as parameter, but its soiution also depends Fig. 1. Some forms of cavities corresponding to 
on Gr, which determines the scaIe of the boundary conditions 

different boundary conditions: a) annular cavity 
with respect to temperature, with radial and axial dimensions nearly the same; 

Examination of actual rotors indicates that it will gen- b) axis of rotation passes through cavity; c) one of 
erally be permissible to make the approximation that the the cavity dimensions considerably smaller than 
cross section is a rectangle with sides parallel to the radial the other; d) radial dimension of cavity sinai1 
and axial directions, compared with distance to axis of rotation. 

The boundary conditions for the prob!em depend on the ratio of the radial and axial dimensions of the cavity and 
on its location relative to the axis of rotation (Fig. 1): 

a) The velocities are zero at all boundaries of the region, and so therefore are the first derivatives of the stream 
function along the boundary and the normal to it. The boundary conditions with respect to temperature are determined 
by the thermal state of the cavity walls. 

b) Because of symmetry we may consider the region corresponding to half the cross section of the cavity; there is 
then no flow of heat or medium across the axis, and the axial velocity component has an extreme va!ue on the axis~ At 
the other three boundaries of the region conditions are the same as for a). 

c) Theoretical and experimental investigations [3, 4] have shown that for plane layers with constant temperature 
at each wall, the convective motion takes the form of separate closed contours, i . e . ,  cells, over a wide range of con- 
ditions. Under very diverse conditions the maximum cell dimension proves to be approximately twice the minimum 
(layer thickness). For plane horizontal layers the ceils are hexagonal in plan, but it may be assumed that under condi- 
tions of axial symmetry the convective motion will be cylindrical and that the cell may be regarded as two-dimensional. 
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Even if this assumption proves to be incorrect,  it wil l  c lear ly  be possible to choose ratios of min imum to maximum ce l l  
dimensions for which heat  flux ca lcula ted  on a two-dimensional  basis will  agree with exper imenta l  results. 

Fig. 2. Turbine rotor. 

The boundary conditions at the walls will  then be the same as for a), and at the boundaries between cel ls  they are 
s imilar  to the conditions on the axis of rotation for b). The heat  flow from ce l l  to ce l l ,  which may.occur  when the t e m -  
perature distribution along the walls is nonuniform, wil l  be negl ig ibly  small ,  since there is no convective hea t  transfer 
between cells .  

d) We may  proceed to examine the problem in rectangular  coordinates with constant acce lera t ion  of the body 
forces. The same scheme is also valid for convection in the cavit ies  of nonrotating e lements .  

To derive the solution of (4) - (6)  for any form of boundary conditions, we may  apply f in i te-di f ference  methods, 
which have been widely used in connection with e lect ronic  computers.  Constraints on the shape of the region may  be 

removed.  Finite difference methods min imize  the value of the "zero" approximation,  which plays a key role in the 
method of successive approximations [6]. In pr inciple ,  it  is also possible to solve the in i t ia l  system of equations (1 ) - (3 )  
on a computer,  but this formulation of the problem is st i l l  unjustif iably compl ica ted .  

In the simplest  cases it  may  also prove expedient  to derive a solution in series form. 

Transition from the laminar  to the turbulent regime brings a radical  change in the nature of the convect ive motion 
and heat  transfer in cavi t ies .  However, exper imenta l  data [5, 7] show that the dependence of  heat  transfer on the Gr 
number is not appreciably  affected.  Thus, we may  expect  satisfactory accuracy in evaluat ing hea t  transfer not only for 
laminar ,  but also for turbulent convection.  If need be, we may  allow for energy dissipation [1] by introducing an add i -  
t ional  term in (2) and (5). 

In conclusion, it  should be noted that  the acce lera t ion  in the rotors of modern s teady-s ta te  turbines reaches values 
approximate ly  5000 t imes that of gravity.  On this basis one must expect  highly intense hea t  transfer. A pre l iminary  
evaluat ion of convection in the cavi ty  of the welded rotor of a turbine from the Khar 'kov turbine plant  (Fig. 2), accord-  
ing to the formulas for a plane layer ,  at an acce!erat ion corresponding to the mean radius of the cavi ty  and a moderate  
temperature  difference (30~ between the discs and the cavi ty  walls indica ted  an increase in effect ive thermal  conduc-  
t iv i ty  by a factor of more than two hundred over that for the medium (air) at rest under the same conditions.  This value 
is only about four t imes less than the thermal  conduct ivi ty of the rotor me ta l  in the given temperature  interval ,  and has 

a very marked influence on the temperature  field of the discs. 

These data are evidence of the need to allow for thermal  convection in closed turbine cavi t ies .  

NOTATION 

~ - v e l o c i t y  vector of medium; p - d e n s i t y  of medium; p-pressure ;  g - a c c e l e r a t i o n  of body forces; l~- temperature ,  
referred to some mean value for the case considered; B, u, b - c o e f f i c i e n t  of thermal  expansion, k inemat ic  viscosity, 
and thermal  diffusivity; w - a n g u l a r  veloci ty  of rotation of rotor; r, z -d imens ionless  coordinates; t -d imens ion les s  t e m -  
perature; P r -Prand t l  number; Gr -Grashof  number, ca lcula ted  from the acce le ra t ion  of centrifugal forces at radius R. 
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